Improving the Performance of Boosting for Naive Bayesian Classification
نویسندگان
چکیده
This paper investigates boosting naive Bayesian classiica-tion. It rst shows that boosting cannot improve the accuracy of the naive Bayesian classiier on average in a set of natural domains. By analyzing the reasons of boosting's failures, we propose to introduce tree structures into naive Bayesian classiication to improve the performance of boosting when working with naive Bayesian classiication. The experimental results show that although introducing tree structures into naive Bayesian classiication increases the average error of naive Bayesian clas-siication for individual models, boosting naive Bayesian classiiers with tree structures can achieve signiicantly lower average error than the naive Bayesian classiier, providing a method of successfully applying the boosting technique to naive Bayesian classiication.
منابع مشابه
A Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملImproving the Performance of Boosting forNaive Bayesian Classi cationKai
This paper investigates boosting naive Bayesian classiica-tion. It rst shows that boosting cannot improve the accuracy of the naive Bayesian classiier on average in a set of natural domains. By analyzing the reasons of boosting's failures, we propose to introduce tree structures into naive Bayesian classiication to improve the performance of boosting when working with naive Bayesian classiicati...
متن کاملImproving the Performance of Boosting
This paper investigates boosting naive Bayesian classiica-tion. It rst shows that boosting cannot improve the accuracy of the naive Bayesian classiier on average in a set of natural domains. By analyzing the reasons of boosting's failures, we propose to introduce tree structures into naive Bayesian classiication to improve the performance of boosting when working with naive Bayesian classiicati...
متن کاملA Study of AdaBoost with Naive Bayesian Classifiers: Weakness and Improvement
This article investigates boosting naive Bayesian classification. It first shows that boosting does not improve the accuracy of the naive Bayesian classifier as much as we expected in a set of natural domains. By analyzing the reason for boosting’s weakness, we propose to introduce tree structures into naive Bayesian classification to improve the performance of boosting when working with naive ...
متن کاملBoosting and Naive Bayesian Learning
Although so-called “naive” Bayesian classification makes the unrealistic assumption that the values of the attributes of an example are independent given the class of the example, this learning method is remarkably successful in practice, and no uniformly better learning method is known. Boosting is a general method of combining multiple classifiers due to Yoav Freund and Rob Schapire. This pap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999